Typically three types of drive signals are used to control the motion of a stepper motor. Each drive type increases in complexity, but adds additional features and options.
A wave drive only energizes one phase at a time. Wave drives are simple to implement with basic hardware, but are rarely used. Because only one coil is energized at a time, torque is significantly reduced.(nema 11 stepper motors)
A full step drive is similar to the wave drive but both phases are always on. This results in maximum rated torque applied to the motor. The timing sequence in a full step drive also promotes smoother rotation as the next phase is not abruptly energized, but instead smoothly introduced during rotation.
The micro-stepping/sine wave is typically implemented by integrated stepper motor drivers to produce a coil current that approximates a sine wave. Popular for systems that require smooth operation, the sine wave reduces motor noise (Fourier Transform). It typically requires additional circuitry as the integrated circuit (IC) usually monitors and controls the current with a feedback control loop.
Stepper Motor Drive Circuits
The most common methods for driving a stepper motor include a simple constant voltage or L/R (L refers to electrical inductance and R stands for electrical resistance) driver, a chopper drive, or a sine wave/micro-stepper driver.
Stepper Motor Integrated Drivers
Once a stepper motor for sale has been selected to suit its mechanical requirements, the next thing is to get that motor turning. It is easier than ever to make a motor operational by selecting an off the shelf stepper motor driver IC or development board. Many of these boards provide features such as current feedback, built in acceleration profiles, and even onboard path planning for more complicated motion control.
Comments